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Abstract

The phenomena of natural convection in an isosceles triangular enclosure filled with a porous matrix has been studied numerically. A
penalty finite element analysis with bi-quadratic elements is used for solving the Navier–Stokes and energy balance equations. The detailed
study is carried out in two cases depending on various thermal boundary conditions; case I: two inclined walls are uniformly heated while
the bottom wall is isothermally cooled and case II: two inclined walls are non-uniformly heated while the bottom wall is isothermally
cooled. The present numerical procedure adopted in this investigation yields consistent performance over a wide range of parameters,
Darcy number, Da ð10�5

6 Da 6 10�3Þ, Rayleigh number, Ra ð103
6 Ra 6 106Þ and Prandtl number, Pr ð0:026 6 Pr 6 10Þ for all the

cases mentioned above. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. It has
been found that at low Darcy numbers ðDa 6 10�5Þ the heat transfer is primarily due to conduction irrespective of the Ra and Pr. In this
regime, the isotherms are almost parallel near the bottom portion of the triangular enclosure whereas at Da ¼ 10�3, the isotherms are more
distorted. As Rayleigh number increases, there is a change from conduction dominant region to convection dominant region for Da ¼ 10�3,
and the critical Rayleigh number corresponding to on-set of convection is obtained. Some interesting features of stream function and iso-
therm contours are discussed especially for low and high Prandtl number limits. Complete heat transfer analysis is performed in terms of
local and average Nusselt numbers.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomena of convective motion of fluid, a well-
known buoyancy driven phenomena, has attracted many
researchers over the past few years. In this context, non-
Darcy effects on natural convection in porous media have
received a great deal of attention. This is due to large num-
ber of applications, such as, oil extraction, fluid flow in
geothermal reservoirs, solid matrix heat exchangers, iron
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blast furnaces, energy efficient drying processes, ground
water hydrology, solidification of casting etc. In recent
years, triangular enclosures have received a considerable
attention because of their applicability in various fields
such as, building and thermal insulation systems, solar
engineering applications, etc.

A good amount of literature is available on the convec-
tion patterns in enclosures filled with porous media (see
[1–4]). The buoyancy driven convection in a differentially
heated porous cavity has been analyzed by Walker and
Homsy [5] with various techniques which yield a complete
description of two-dimensional solutions. The Brinkman-
extended Darcy model has been studied by Tong and Subr-
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Nomenclature

Da Darcy number
g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

K permeability of the porous medium
L height of the triangular cavity, m
Nu Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T temperature, K
T h temperature of hot inclined wall, K
T c temperature of cold bottom wall, K
u, v x and y components of dimensional velocities,

ms�1, respectively
U, V x and y components of dimensionless velocities

respectively
X, Y dimensionless distances along x and y coordi-

nates, respectively

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
n, g horizontal and vertical coordinates in a unit

square, respectively
m kinematic viscosity, m2 s�1

h dimensionless temperature
q density, kg m�3

U basis functions
w stream function

Subscripts

b bottom wall
l left wall
r right wall
s side wall

Sin (π   orθ= 1 Y)Sin (π   orθ= 1 Y)

θ = 0

C

B
X, UA

Y, V

g

Fig. 1. Schematic diagram of the physical system.
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amanian [6], and Lauriat and Prasad [7] to investigate the
buoyancy effects on natural convection in a vertical cavity.
However, this model does not provide adequate analysis for
the transition from porous medium flow to pure fluid flow
as the permeability is more in the case of porous medium.
A model that bridges the gap between the Darcy and
Navier–Stokes equations is the Darcy–Forchheimer model
developed by Vafai and Tien [8]. In addition, this model
describes the effects of inertia and viscous forces in porous
media and was used by Poulikakos and Bejan [9], Poulika-
kos [10], Lauriat and Prasad [11] to investigate the free con-
vection in a vertical porous layer and in a vertical enclosure
filled with a porous medium. Very recently Basak et al. [12]
studied numerically the free convection flows in a square
cavity filled with a porous matrix for various boundary con-
ditions and with wide range of parameters, 103

6 Ra 6 106;
0:71 6 Pr 6 10; 10�5

6 Da 6 10�3. Results showed that
non-uniform heating of the bottom wall produces greater
heat transfer rate at the center of the bottom wall than uni-
form heating case for all Ra, but average Nu shows overall
lower heat transfer rates for non-uniform heating case.

A few studies on natural convection on triangular enclo-
sures filled with a viscous fluid [13] or a porous medium
[14,15] have been carried out by earlier researchers. Some
of the earlier works [14,15] are based on convection pat-
terns in building attic spaces which are filled with porous
material. The scaling analysis and numerical simulations
were carried out in these studies and it was found that dis-
tinct thermal boundary layers exist if Ra

1
2 H

L > 1, where H
L is

the height/length geometric ratio of the attic-shaped por-
ous layer. Although a number of papers deal with heat
transfer studies on various applications in triangular por-
ous spaces, a comprehensive analysis on heat transfer and
flow circulations is yet to appear in literature.

The aim of the present paper is to provide a complete
understanding about the definition of the problem, solu-
tion procedure using finite element method and a detailed
study of the temperature and flow field with detailed anal-
ysis on heat transfer evaluation. The geometry of the trian-
gular enclosure with boundary conditions is shown in
Fig. 1. The Darcy–Forchheimer model without the Forch-
heimer’s inertia term has been adopted. The jump disconti-
nuities in Dirichlet type of wall boundary conditions at the
corner points due to uniform heating correspond to com-
putational singularities (see Fig. 1). In particular, the singu-
larity at the bottom corner nodes needs special attention.
One of the ways for handling the problem is to assume
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the average temperature of the two walls at the corner as
suggested by the earlier works on square cavity [16,12].

In the current study, we have used Galerkin finite element
method with penalty parameter to solve the nonlinear
coupled partial differential equations governing flow and
temperature fields for both uniform and non-uniform
temperature distributions prescribed at the side walls.
Non-orthogonal grid generation has been done with iso-
parametric mapping [17,18]. The grid generation has been
done using iso-parametric mapping. Numerical results are
obtained to display the circulations and temperature distri-
butions within the triangle and the heat transfer rate for
the walls in terms of local and average Nusselt numbers.

2. Governing equations

The physical domain is shown in Fig. 1. Thermophysical
properties of the fluid in the flow field are assumed to be con-
stant except the density variations causing a body force term
in the momentum equation. The Boussinesq approximation
is invoked for the fluid properties with the variation of den-
sity with temperature and to couple in this way the temper-
ature field to the flow field. Further, it is assumed that the
temperature of the fluid phase is equal to the temperature
of the solid phase everywhere in the porous region, and local
thermal equilibrium (LTE) is applicable in the present inves-
tigation [19]. Also, a velocity square term could be incorpo-
rated in the momentum equations to model the inertia effect
which is more important for non-Darcy effect on the convec-
tive boundary layer flow over the surface of a body embed-
ded in a high porosity media. However, we have neglected
this term in the present study because we are dealing with
the natural convection flow in a cavity filled with a porous
medium. Under these assumptions and following the earlier
works [8,20] with the Forchheimer’s inertia term neglected,
the governing equations for steady two-dimensional natural
convection flow in the porous cavity using conservation of
mass, momentum and energy can be written with following
dimensionless variables

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

P ¼ pL2

qa2
; Pr ¼ m

a
; Da ¼ K

L2
; Ra ¼ gbðT h � T cÞL3Pr

m2

ð1Þ
as:

oU
oX
þ oV

oY
¼ 0; ð2Þ

U
oU
oX
þ V

oU
oY
¼ � oP

oX
þ Pr

o2U

oX 2
þ o2U

oY 2

� �
� Pr

Da
U ; ð3Þ

U
oV
oX
þ V

oV
oY
¼ � oP

oY
þ Pr

o
2V

oX 2
þ o

2V

oY 2

� �
� Pr

Da
V þ RaPrh;

ð4Þ

U
oh
oX
þ V

oh
oY
¼ o2h

oX 2
þ o2h

oY 2
: ð5Þ
The boundary conditions are

UðX ;0Þ ¼ 0¼ V ðX ;0Þ; hðX ;0Þ ¼ 0 on AB; 806 X 6 2;

UðX ;Y Þ ¼ 0¼ V ðX ;Y Þ; hðX ;Y Þ ¼ 1

or sinðpY Þ on AC; Y ¼ X ; 806 X 6 1;

UðX ;Y Þ ¼ 0¼ V ðX ;Y Þ; hðX ;Y Þ ¼ 1

or sinðpY Þ on BC; Y ¼ 2�X ; 816 X 6 2:

ð6Þ
3. Solution procedure

The momentum and energy balance equations (3)–(5)
are solved using the Galerkin finite element method. The
continuity Eq. (2) will be used as a constraint due to mass
conservation and this constraint may be used to obtain the
pressure distribution. In order to solve Eqs. (3)–(4), we use
the penalty finite element method where the pressure P is
eliminated by a penalty parameter c and the incompress-
ibility criteria given by Eq. (2) which results in

P ¼ �c
oU
oX
þ oV

oY

� �
: ð7Þ

The continuity equation [Eq. (2)] is automatically satisfied
for large values of c. Typical values of c that yield consis-
tent solutions are 107. Using Eq. (7), the momentum bal-
ance equations [Eqs. (3) and (4)] reduce to

U
oU
oX
þ V

oU
oY
¼ c

o

oX
oU
oX
þ oV

oY

� �
þ Pr

o2U

oX 2
þ o2U

oY 2

� �

� Pr
Da

U ; ð8Þ

and

U
oV
oX
þ V

oV
oY
¼ c

o

oY
oU
oX
þ oV

oY

� �
þ Pr

o2V

oX 2
þ o2V

oY 2

� �

� Pr
Da

V þ RaPrh: ð9Þ

The system of Eqs. (5), (8), and (9) with boundary condi-
tions (6) are solved by using Galerkin finite element meth-
od [17]. The detailed description of the solution procedure
is explained in an earlier work [12]. The numerical solutions
are obtained in terms of the velocity components ðU ; V Þ
and stream function ðwÞ using the relationship between
the stream function ðwÞ and the velocity components [21],
where the stream function ðwÞ is defined in the usual way
as U ¼ ow

oY and V ¼ � ow
oX . The no-slip condition is valid at

all boundaries as there is no cross flow, hence w ¼ 0 is used
for the boundaries.

The heat transfer coefficient in terms of the local Nusselt
number ðNuÞ is defined by

Nu ¼ � oh
on
; ð10Þ

where n denotes the normal direction on a plane. The local
Nusselt number on a surface contains normal derivative as
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shown in Eq. (10) and normal derivatives are calculated
using the bi-quadratic basis set in n� g coordinate system.

The local Nusselt numbers at bottom wall ðNubÞ, left
wall ðNulÞ and right wall ðNurÞ are defined as

Nub ¼ �
X9

i¼1

hi
oUi

oY
ð11Þ

Nul ¼
X9

i¼1

hi �
1ffiffiffi
2
p oUi

oX
þ 1ffiffiffi

2
p oUi

oY

� �
: ð12Þ

and

Nur ¼
X9

i¼1

hi
1ffiffiffi
2
p oUi

oX
þ 1ffiffiffi

2
p oUi

oY

� �
: ð13Þ

The average Nusselt numbers at the bottom and side walls
are

Nub ¼
R 2

0 Nub dX

X j20
¼ 1

2

Z 2

0

Nub dX ð14Þ

and

Nul ¼ Nur ¼
1ffiffiffi
2
p

Z ffiffi
2
p

0

Nul dS ð15Þ

Here dS denotes the elemental length along inclined sides
of the triangular cavity as seen in Fig. 1.
4. Results and discussion

4.1. Numerical tests

The computational domain in n� g coordinates consists
of 20 � 20 bi-quadratic elements which correspond to
41 � 41 grid points. Note that, the computational grid in
the triangular domain is generated via mapping the trian-
gular domain into square domain in n� g coordinate sys-
tem [17]. The bi-quadratic elements with lesser number of
nodes smoothly capture the non-linear variations of the
field variables which are in contrast with finite difference/
finite volume solutions available in the literature [6,11].
In addition, we have carried out the validation of the ther-
mal equilibrium for the first time via computing the aver-
Fig. 2. Temperature and stream function contours for cold bottom wall, hðX ;
Ra ¼ 106 and Pr ¼ 0:7 (Case-I). Clockwise and anti-clockwise flows are shown
age Nusselt number for bottom wall which is
ffiffiffi
2
p

times of
that inclined wall as discussed later.

In the current investigation, Gaussian quadrature based
finite element method provides the smooth solutions at the
interior domain including the corner regions as evaluation
of residuals depends on interior gauss points and thus the
effect of corner nodes are less pronounced in the final solu-
tion. The current finite element approach offers special
advantage on evaluation of local Nusselt number at the left
and right walls as the element basis functions are used to
evaluate the heat flux. For the two cases (I and II), the val-
ues of Ra; Da and Pr are considered with wide range to
analyze the effects on the heat transfer and fluid flow.
The comparative study was made for uniform and non-uni-
form heating of the side walls. For the brevity of the paper
only the most important results are presented in the follow-
ing sections.

4.2. Uniform heating of side walls (Case I)

Figs. 2–6 display the effects of Da ðDa ¼ 10�5–10�3Þ,
Ra ðRa ¼ 103–106Þ and Pr ðPr ¼ 0:026–10Þ when the side
walls are uniformly heated while the bottom wall is main-
tained at constant cold temperature. The fluid near the
inclined portion of the enclosure is hotter than the fluid
near to the cold bottom wall and hence the fluid near the
inclined walls have lower density than those near the bot-
tom cold wall. Thus, the fluid near the hot inclined walls
move upward resulting in two oppositely rotating circula-
tions in the enclosure. Using the definition of stream func-
tion, the streamlines with positive values of w correspond
to anti-clockwise circulation, and those with negative val-
ues of w correspond to clock-wise circulation. Note that,
for steady flow, stream lines are equivalent to the paths fol-
lowed by the individual particles in the fluid. Results indi-
cate that the fluid circulations and isothermal lines are
strongly dependent on Darcy number as can be seen in
the Figs. 2–4.

Fig. 2 illustrates the temperature and stream function
contours for Da ¼ 10�5 and Ra ¼ 106, and the flow is seen
to be very weak as observed from stream function con-
tours. It may be noted that the maximum value of stream
function is 0.15. The temperature contours are smooth
and monotonic and this illustrates that heat transfer is
0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Da ¼ 10�5,
with negative and positive signs of stream function, respectively.



Fig. 4. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Da ¼ 10�3,
Ra ¼ 106 and Pr ¼ 0:7 (Case-I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.

Fig. 5. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Da ¼ 10�3,
Ra ¼ 106 and Pr ¼ 0:026 (Case-I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.

Fig. 3. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Da ¼ 10�3,
Ra ¼ 4� 105 and Pr ¼ 0:7 (Case-I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.

Fig. 6. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Da ¼ 10�3,
Ra ¼ 106 and Pr ¼ 10 (Case-I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.
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purely due to conduction. As Da increases to 10�3, the
strength of the circulation increases as seen later. The crit-
ical Rayleigh number for the conduction dominant mode is
found as Ra ¼ 4� 105 for Da ¼ 10�3 and Pr ¼ 0:7. It may
be noted that conduction is dominant below the critical Ra.
The value of critical Ra may be obtained from asymptotes
of average Nusselt number vs Rayleigh number plot as dis-
cussed later. The temperature and stream function plots for
critical Ra is shown in Fig. 3. It is observed that at critical
Ra the middle portion of the isotherm contours starts get-
ting deformed, and the maximum value of w ¼ 1:8 is at the
eye of vortices. As Ra increases to 106, the buoyancy driven
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circulation inside the cavity is also increased as seen from
greater magnitudes of the stream function (Fig. 4). The cir-
culations are greater near corner points due to the eye of
vortices where maximum value of w ¼ 3 and least at the
wall and at the center due to no slip boundary conditions
and no cross flow, respectively. It is observed that the
greater circulation in bottom regime follows a progressive
wrapping and hence the isotherms are more compressed
towards the bottom wall as can be seen in Fig. 4. It is also
interesting to note that, the regime near the top corner has
no significant thermal gradient resulting in no circulations.
Due to high circulations, the temperature contours with
h 6 0:7 are condensed in a very small regime near the bot-
tom wall and consequently, the temperature gradients near
the bottom wall are found to be significantly high. It is
observed that 80% of the isotherms are confined to only
30% of the triangle near the bottom wall.

Comparative studies on Figs. 5 and 6 show that as Pr

increases from 0.026 to 10, the values of stream function
and isotherms in the core cavity increase. The similar qual-
itative features of stream function and isotherms are also
found for Pr ¼ 10 and Pr ¼ 1000 (figures not shown). It
is interesting to note that, the greater circulations due to
higher Pr leads to elliptical stream function deformed
towards the corner points. At high Pr, the stream functions
except near the eyes of vortices are almost triangular indi-
cating higher intensity of flows. The temperature and flow
behaviors for a representative high Pr ðPr ¼ 10Þ are shown
in Fig. 6.
Fig. 7. Temperature and stream function contours for cold bottom wall, hðX
Da ¼ 10�3, Ra ¼ 106 and Pr ¼ 0:026 (Case-II). Clockwise and anti-clockwise
respectively.

Fig. 8. Temperature and stream function contours for cold bottom wall, hðX
Da ¼ 10�3, Ra ¼ 106 and Pr ¼ 0:7 (Case-II). Clockwise and anti-clockwise
respectively.
4.3. Non-uniform heating of side walls (Case II)

Figs. 7 and 8 illustrate the stream function and isotherm
contours when the inclined walls are non-uniformly heated
via sinusoidal function. As seen in Figs. 2–6, uniform heat-
ing of inclined walls causes a finite discontinuity in Dirich-
let type of boundary conditions for the temperature
distribution at both edges of the bottom wall. In contrast,
the non-uniform heating removes the singularity at the
edges of bottom wall and provides a smooth temperature
distribution in the entire enclosure. For Da ¼ 10�5–10�3,
the circulation pattern is qualitatively similar to the uni-
form heating case for larger values of Pr ðPr P 0:7Þ. How-
ever, compared to uniform heating case, the temperature
contours are more compressed near the side walls of enclo-
sure. At Ra ¼ 106 and Pr ¼ 0:026, the isotherms with
h 6 0:6 are pushed towards the bottom wall and conse-
quently the temperature gradients near the bottom wall
are significant (Fig. 7). This is due to the fact that the
strong primary circulations occur near the center (Fig. 7).
In addition, the secondary circulations also occur near
the center of the bottom wall which caused the eyes of pri-
mary vortices to shift at the center. Further the eyes of pri-
mary vortices at the center push the isotherms near the side
walls and at the vertex. It is also interesting to note that,
the circulations are stronger than uniform heating case
(see Fig. 5) and the maximum value of w ¼ 3:8 is found.
It may be noted that, the conduction dominant heat trans-
fer is observed upto Ra ¼ 4� 105.
; 0Þ ¼ 0 and non-uniformly heated inclined walls, hðX ; Y Þ ¼ sinðpY Þ, with
flows are shown with negative and positive signs of stream function,

; 0Þ ¼ 0 and non-uniformly heated inclined walls, hðX ; Y Þ ¼ sinðpY Þ, with
flows are shown with negative and positive signs of stream function,
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At Pr ¼ 0:7, the isotherms with h 6 0:5 further pushed
towards the bottom wall as seen in Fig. 8. In addition,
the greater circulations near the top corner or the eyes of
vortices near the top corner push the isotherms within a
very narrow regime at the vertex and that results in large
thermal gradient at top corner point. In contrast, the circu-
lations near the bottom corner point is large for uniform
heating and large thermal gradient occurs near the bottom
wall. The flow intensity is found to be enhanced with Pr

and it is observed that maximum value of stream function
is 3.8 with Pr ¼ 0:026 whereas maxima is 6 for Pr ¼ 0:7
(Figs. 7 and 8). Due to non-uniform heating of inclined
walls, the heating rate near to bottom corners of the
inclined walls is generally lower. Results indicate that the
strength of the circulations is more for non-uniform heat-
ing case than uniform heating.
4.4. Heat transfer rates: local Nusselt numbers

Fig. 9a and b displays the effects of Da ðDa ¼ 10�5–

10�3Þ and Pr ðPr ¼ 0:7; 10Þ on the local Nusselt numbers
at the cold bottom wall and hot inclined walls corresponding
to a high Rayleigh number ðRa ¼ 106Þ. In case of uniform
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isothermal bottom wall.
heating of the bottom wall (see Fig. 9a), due to presence
of discontinuity in the temperature boundary condition at
the edges of bottom wall, the heat transfer rate is very high
at these corners and this is common to all Darcy number and
Prandtl numbers. Moreover it reduces towards the middle
of the bottom wall as the temperature contours are well dis-
persed at the middle for Da ¼ 10�5. The central regime of
the bottom wall ðX ¼ 1Þ corresponds to larger Nu for
Da ¼ 10�3 as the compression of the isotherms is significant
near the central regime of the bottom wall. At the inclined
wall (see Fig. 9b), heat transfer rate is maximum at the bot-
tom edge and minimum at the top edge for all Darcy num-
bers. As Da increases from 10�5 to 10�3, isotherm lines are
pushed towards the bottom wall from the inclined walls.
Therefore, at the junction of bottom wall, the thermal gradi-
ents are relatively more and therefore the heat transfer
rate is maximum at the bottom edge of the inclined wall.
It is interesting to note that the local Nusselt number tends
to zero near the vertex due to uniform temperature
distribution.

In the case of non-uniform heating (see Fig. 9a), the local
Nusselt number is almost constant for Da ¼ 10�4 through-
out the bottom wall due to conduction dominant mode of
heat transfer. As Da increases from 10�5 to 10�3, there is
a maximum value of thermal gradient at X ¼ 1 due to
increased primary circulation and that results in maximum
local heat transfer rate ðNuÞ at X ¼ 1. It is interesting to
observe that, the non-uniform heating strategy produces a
sinusoidal type of local heat transfer rate with its maximum
value at the center and edges of bottom wall. At the inclined
wall (see Fig. 9b), the local Nusselt number curve for
Da ¼ 10�5 shows monotonic decrease from bottom edge
to a certain region near to top edge of the inclined wall
and local Nu has a maximum value at the top edge of the
inclined wall due to the compression of isotherms near the
vertex. Note that, the local Nusselt number have more wavy
distributions for Prandtl number ðPr ¼ 0:7; 10Þ as seen in
Fig. 9b due to stronger primary circulations in presence of
non-uniform heating. At Da ¼ 10�3, there are two local
maxima of Nusselt number for the inclined wall as the iso-
therms are compressed near the top corner and the central
regime of inclined wall.

4.5. Overall heat transfer rate and average Nusselt numbers

The overall effects upon the heat transfer rates are dis-
played in Fig. 10 where the distributions of the average
Nusselt number of the bottom and inclined walls, respec-
tively, are plotted vs the logarithmic Rayleigh number.
As a verification of the thermal equilibrium of the present
steady state system, numerical values of the average Nus-
selt numbers on bottom and inclined walls are compared
and it is found that the average Nusselt number of bottom
wall is nearly

ffiffiffi
2
p

times of average Nusselt number of side
wall as the length of the side wall is

ffiffiffi
2
p

. Fig. 10 is shown
for Da varying within 10�5–10�3 and Pr ¼ 0:7. It is inter-
esting to note that the average Nusselt number increases
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significantly with Darcy number in the case of uniform
heating. It may be remarked that the overall heat transfer
rate (average Nusselt number) is less in non-uniform heat-
ing as compared to uniform heating due to the less heat
input to the system for all Darcy number regimes. For
the uniform heating case, it is observed that average Nus-
selt numbers for both the bottom and inclined walls remain
constant for Da ¼ 10�5 during the entire Rayleigh number
regime. This illustrates the conduction dominant heat
transfer for low Darcy number regime irrespective of Ray-
leigh numbers. As Da increases, the conduction dominant
heat transfer regime is narrowed down (see Fig. 10a and
b). For conduction dominant heat transfer, the average
Nusselt number is in general constant irrespective of Ra.

For non-uniform heating case, it is also interesting to
observe that the average Nusselt number for both the bot-
tom and inclined walls is almost constant irrespective of Ra

for Da ¼ 10�5 (see Fig. 10c and d). This is due to the fact
that the flow circulations may cause the isotherm contours
to be widely dispersed near the bottom and inclined walls.
However, at higher Da, the circulations still cause large
temperature gradient near the bottom and inclined walls
for higher Ra and hence the increase in average Nusselt
number with Darcy number is monotonic. Similar situation
is also observed for Pr ¼ 10 (figure not shown to brief the
manuscript).

The insets show the log-log plot for average Nusselt
number vs Rayleigh number for convection dominant
regimes. The following correlations with Prandtl number
Pr ¼ 0:7 are obtained for case I (uniform heating) and case
II (non-uniform heating) as follows:

Case I: uniform heating of inclined walls

Nub ¼
ffiffiffi
2
p

Nus

¼ 4:7652Ra0:0115; Ra P 6:0� 105; Da ¼ 10�4

¼ 3:3564Ra0:0413; Ra P 4:0� 105; Da ¼ 10�3

ð16Þ

Case II: non-uniform heating of inclined walls

Nub ¼
ffiffiffi
2
p

Nus

¼ 1:6618Ra0:0213; Ra P 6:0� 105; Da ¼ 10�4

¼ 1:3617Ra0:0404; Ra P 4:0� 105; Da ¼ 10�3

ð17Þ
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5. Conclusions

The prime objective of the current investigation is to ana-
lyze the temperature and flow field with detailed analysis on
heat transfer evaluation for natural convection in triangular
enclosure filled with porous matrix. The momentum trans-
fer in the porous region is modeled by using Darcy–Forch-
heimer law. The penalty finite element method helps to
obtain smooth solutions in terms of stream function and iso-
therm contours for wide ranges of Da ðDa ¼ 10�5–10�3Þ,
Ra ðRa ¼ 103–106Þ and Pr ðPr ¼ 0:026–10Þ with uniform
and non-uniform heating of side walls. Results indicate that
at low Darcy number ðDa ¼ 10�5Þ, the isotherm lines are
smooth and monotonic for all the Ra and Pr considered.
The magnitudes of the stream function contours are very
low. This illustrates that at low Da the flow is mostly due
to conduction. As Da increases ðDa ¼ 10�3Þ, the intensity
of circulation increases. Consequently, the isotherms are
distorted and they are found to be confined within some
small regimes near the bottom wall of the triangle.

The conduction dominant heat transfer mode is
observed for Ra 6 4� 105 especially for Da ¼ 10�3 during
uniform and non-uniform heating of the side walls. At the
onset of convection dominant mode, the temperature con-
tour lines get compressed towards the bottom wall and the
compression is more for uniform heating. It is also interest-
ing to observe that, the temperature contours are more
compressed near the central regime or top corner of the
inclined wall for non-uniform heating of inclined walls.
The effect of Prandtl number is studied to analyze the flow
behavior and heat transfer rates for Da ¼ 10�3 with
Ra ¼ 106. The shapes of the stream function contours are
circular in nature at Pr ¼ 0:026 and the shapes would fol-
low the triangular/elliptical structure at high Pr ðPr ¼ 10Þ.
It may be inferred that at low Prandtl numbers geometry
does not have much influence on flow structure. At high
Prandtl numbers, geometry has considerable effect and
hence the stream function contours are nearly triangular
in shape. It is also observed that, as Pr increases from
0.026 to 10, the values of stream function and isotherms
in the core cavity increase.

The heat transfer effects are analyzed with local and
average Nusselt numbers. It is observed that the local Nus-
selt numbers for the bottom wall are maximum at the bot-
tom corner points for uniform heating. On the other hand
the local Nusselt number shows little variations due to non-
uniform heating especially for Da 6 10�4. The local Nus-
selt number distribution shows wavy nature for high
Da ðDa ¼ 10�3Þ with Pr ¼ 0:7 for both uniform and non-
uniform heating cases. The local Nusselt number for the
inclined walls has two maxima at the center and top region
due to the compression of isotherms. The heat transfer
rates due to non-uniform heating at these two regimes
are higher than uniform heating case. The average Nusselt
number illustrates overall lower heat transfer rates for sinu-
soidal or non-uniform heating cases.
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